DPP - Daily Practice Problems

Chapter-wise Sheets

Da	te : Start Time :		End Time :			
	C H E M		STRY (CC08)			
	SYLLABUS : F	(edo)	x Reactions			
Max	Max. Marks : 180 Marking Scheme : + 4 for correct & (-1) for incorrect Time : 60 min.					
I	INSTRUCTIONS : This Daily Practice Problem Sheet contains 45 MCQ's. For each question only one option is correct. Darken the correct circle/ bubble in the Response Grid provided on each page.					
1. 2.	The brown ring complex is formulated as $[Fc(H_2O)_5 NO]SO_4$. The oxidation number of iron is (a) 1 (b) 2 (c) 3 (d) 0 In which of the following reactions, there is no change in	4.	 (a) +3 (b) +2 (c) +6 (d) +4 In which of the following pairs, there is greatest difference in the oxidation number of the underlined elements ? 			
3.	valency? (a) $4\text{KCIO}_3 \rightarrow 3\text{KCIO}_4 + \text{KCI}$ (b) $\text{SO}_2 + 2 \text{ H}_2\text{S} \rightarrow 2\text{H}_2\text{O} + 3 \text{ S}$ (c) $\text{BaO}_2 + \text{H}_2\text{SO}_4 \rightarrow \text{BaSO}_4 + \text{H}_2\text{O}_2$ (d) $2 \text{ BaO} + \text{O}_2 \rightarrow 2 \text{ BaO}_2$ The oxidation state of chromium in the final product formed by the reaction between KI and acidified potassium dichromate solution is:	5,	(a) \underline{NO}_2 and \underline{N}_2O_4 (b) \underline{P}_2O_5 and \underline{P}_4O_{10} (c) \underline{N}_2O and \underline{NO} (d) \underline{SO}_2 and \underline{SO}_3 A compound of X c and F is found to have 53.5% of X c. What is oxidation number of X c in this compound? (a) -4 (b) 0 (c) $+4$ (d) $+6$			
R	sponse Grid 1. abcd 2. abcd	3.	abcd 4. abcd 5. abcd			

Space for Rough Work _

Get More Learning Materials Here : 📕

DPP/CC08

c-30

- 6. Atomic number of an element is 22. The highest O.S. exhibited by it in its compounds is
 - (a) 1 (b) 2 (c) 3 (d) 4
- 7. The reaction in which hydrogen peroxide acts as a reducing agent is
 - (a) $PbS+4H_2O_2 \rightarrow PbSO_4+4H_2O_1$
 - (b) $2KI+H_2O_2 \rightarrow 2KOH+l_2$
 - (c) $2\text{FeSO}_4 + \text{H}_2\text{SO}_4 + \text{H}_2\text{O}_2 \rightarrow \text{Fe}_2(\text{SO}_4)_3 + 2\text{H}_2\text{O}_4$
 - (d) $Ag_2O+H_2O_2 \rightarrow 2Ag+H_2O+O_2$
- 8. Of the following reactions, only one is a redox reaction. Identify it
 - (a) $Ca(OH)_2 + 2HCI \rightarrow CaCl_2 + 2H_2O$
 - (b) $BaCl_2 + MgSO_4 \rightarrow BaSO_4 + MgCl_2$
 - (c) $2S_2O_7^{2-} + 2H_2O \rightarrow 4SO_4^{2-} + 4H^+$
 - (d) $Cu_2S+2FeO \rightarrow 2Cu+2Fe+SO_2$
- 9. Arrange the following in the order of their decreasing electrode potentials : Mg, K, Ba and Ca
 - (a) K > Ca > Ba > Mg (b) Ba > Ca > K > Mg
 - (c) Ca > Mg > K > Ba (d) Mg > Ca > Ba > K
- 10. Which of the following statements are correct concerning redox properties?
 - (i) A metal M for which E° for the half life reaction Mⁿ⁺ + ne⁻ → M is very negative will be a good reducing agent.
 - (ii) The oxidizing power of the halogens decreases from chlorine to iodine.
 - (iii) The reducing power of hydrogen halides increases from hydrogen chloride to hydrogen iodide
 - (a) (i), (ii) and (iii) (b) (i) and (ii)
 - (c) (i) only (d) (ii) and (iii)
- 11. A negative E^{\bullet} means that redox couple is a <u>A</u> than the H^+/H_2 couple

A positive E^{\bullet} means that the redox couple is a <u>B</u> than H^{+}/H_{2} couple

- (a) A = stronger reducing agent B = weaker reducing agent
- (b) A = stronger oxidising agent
 B = weaker oxidising agent
- (c) A =weaker oxidising agent
- B = stronger oxidising agent(d) Both (a) and (c)
- If equal volume of reactants are used, then no. of moles of KMnO₄ (moles per litre) used in acidic medium required to completely oxidise 0.5 M FeSO₃?
 - (a) 0.3 (b) 0.1
 - (c) 0.2 (d) 0.4
- 13. If rod of a metal (x) is put in a metal ion solution which is blue in colour, solution turn colourless. The metal rod and solution respectively are?
 - (a) Zinc and Cu(II) (b) Zinc and Ni(II)
 - (c) Aluminium and Cu(II) (d) Both (a) and (c)
- 14. In the reaction between SO_2 and O_3 the equivalent weight of sulphur in product is
 - (a) the same as its molecular weight
 - (b) half of the molecular weight
 - (c) one-third of the molecular weight
 - (d) one-fourth of the molecular weight
- 15. When $KMnO_4$ reacts with acidified $FeSO_4$
 - (a) $FeSO_4$ is oxidised and $KMnO_4$ is reduced
 - (b) only KMnO₄ is oxidised
 - (c) only $FeSO_4$ is oxidised
 - (d) None of these
- 16. Consider the following reaction :

$$xMnO_4^- + yC_2O_4^{2-} + zH^+ \rightarrow xMn^{2+} + 2yCO_2 + \frac{z}{2}H_2O_2$$

The value's of x, y and z in the reaction are, respectively :

(a) 5, 2 and 16 (b) 2, 5 and 8

- (c) 2,5 and 16 (d) 5,2 and 8
- 17. When Cl_2 gas reacts with hot and concentrated sodium hydroxide solution, the oxidation number of chlorine changes from:
 - (a) zero to +1 and zero to -5
 - (b) zero to -1 and zero to +5
 - (c) zeroto-l andzeroto+3
 - (d) zero to+1 and zero to-3

Space for Rough Work

DPP/CC08

18. Oxidation state for nitrogen is incorrectly given for compound oxidation state

0

-1

-2

-3

- (a) $[Co(NH_3)_5Cl]Cl_2$
- (b) NH,OH
- (c) $(N_2H_5)_2SO_4$
- (d) Mg_3N_2
- 19. Standard electrode potentials of redox couples A^{2+}/A , B^{2+}/B , C^{2+}/C and D^{2+}/D arc 0.3V, -0.5V, -0.75V and 0.9V respectively. Which of these is best oxidising agent and reducing agent respectively-
 - (b) B^{2+}/B and D^{2+}/D (a) D^{2+}/D and B^{2+}/B
 - (c) D^{2+}/D and C^{2+}/C (d) C^{2+}/C and D^{2+}/D
- 20. MnO_4^{2-} (1 mole) in neutral aqueous medium disproportionates to
 - (a) 2/3 mole of MnO₄⁻ and 1/3 mole of MnO₂
 - (b) $1/3 \mod of MnO_4^-$ and $2/3 \mod of MnO_2$
 - (c) 1/3 mole of Mn₂O₇ and 1/3 mole of MnO₂
 - (d) 2/3 mole of Mn₂O₇ and 1/3 mole of MnO₂
- 21. In the standardization of $Na_2S_2O_3$ using $K_2Cr_2O_7$ by iodometry, the equivalent weight of K₂Cr₂O₂ is
 - (a) (molecularweight)/2 (b) (molecular weight)/6
- (c) (molecular weight)/3(d) same as molecular weight 22. The species that undergoes disproportionation in an alkaline
- medium are
 - (b) MnO_4^{2-} (a) Cl_2
 - (d) All of these (c) NO_2
- 23. One mole of N₂H₄ loses 10 moles of electrons to form a new compound y. Assuming that all nitrogen appear in the new compound, what is the oxidation state of nitrogen in y(There is no change in the oxidation state of hydrogen)
 - (a) –l (b) -3
 - (c) +3 (d) +5
- 24. Phosphorus, sulphur and chlorinc undergo disproportion in the ... A ... medium.
 - Here, A refers to
 - (a) acidic (b) alkalinc
 - (c) neutral (d) Both (a) and (b)
- 25. In which of the following compounds oxygen has highest oxidation state and in which it has lowest oxidation state? OF₂, H₂O₂, KO₂, O₂F₂

- (a) Highest = KO_2 , lowest = H_2O_2 (b) Highest = OF_2 , lowest = H_2O_2 (c) Highest = OF_2 , lowest = KO_2 (d) Highest = KO_2 , lowest = H_2O_2 26. The most powerful oxidizing agent from the following is (b) HPO₃ (a) H_3BO_3 (c) H_3PO_4 (d) H_2SO_4 27. When SO, is passed through acidified solution of potassium dichromate, then chromium sulphate is formed. The change in valency of chromium is (a) +4to+2 (b) +5to+3 (c) +6t0+3(d) +7 to +2Standard reduction potentials of the half reactions are given below . $F_2(g) + 2e^- \rightarrow 2F^-(aq); E^\circ = +2.85 V$ $Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq); E^\circ = +1.36V$ $Br_2(1)+2e^- \rightarrow$ $I_2(s) + 2c^- \rightarrow 2I^-(aq); E^{\bullet} = +$ $2Br^{-}(aq); E^{\circ} = +1.06 V$
 - 0.53V The strongest oxidising and reducing agents respectively are :
 - (a) F_2 and I^- (b) Br, and CI-
 - (c) Cl₂ and Br⁻⁻ (d) Cl_2 and l_2
- 29. A gas X at 1 atm is bubbled through a solution containing a mixture of 1 M Y and 1 M Z at 25°C. If the reduction potential is Z > Y > X, then
 - (a) Y will oxidise X and not Z
 - (b) Y will oxidise Z and not X
 - (c) Y will oxidise both X and Z
 - (d) Y will reduce both X and Z
- 30. The violent reaction between sodium and water is an example of
 - (a) Reduction (b) Oxidation
 - (c) Redox reaction (d) Neutralization reaction
- 31. The equivalent weight of Mohr's salt,
 - $FcSO_4(NH_4)_2SO_4.6H_2O$ is equal to
 - (a) its molecular weight
 - (b) its atomic weight
 - (c) half-its molecular weight
 - (d) one-third its molecular weight

Response Grid	18.@bCd 23.@bCd 28.@bCd	19.ab¢d 24.ab¢d 29.ab¢d	20.ab¢d 25.ab¢d 30.ab¢d	21. a b C d 26. a b C d 31. a b C d	22. abcd 27. abcd
------------------	-------------------------------	-------------------------------	-------------------------------	---	----------------------

28.

Space for Rough Work

Get More Learning Materials Here :

CLICK HERE

C-31

DPP/CC08

c-32

- 32. Theset of numerical coefficients that balances the equation $K_2CrO_4 + HCl \rightarrow K_2Cr_2O_7 + KCl + H_2O$
 - (a) 1, 1, 2, 2, 1 (b) 2,2,1,1,1
 - (c) 2, 1, 1, 2, 1 (d) 2,2,1,2,1
- 33. Thiosulphate reacts differently with iodine and bromine in the reactions given below:

 - $\begin{array}{l} 2S_2O_3^{2-} + l_2 \rightarrow S_4O_6^{2-} + 2l^- \\ S_2O_3^{2-} + Br_2 + 5H_2O \rightarrow 2SO_4^{2-} + 2Br^- + 10H^+ \end{array}$

Which of the following statements justifies the above dual behaviour of thiosulphate?

- (a) Brominc is a stronger oxidant than iodine.
- (b) Bromine is a weaker oxidant than iodine.
- (c) Thiosulphate undergoes oxidation by bromine and reduction by iodine in these reactions.
- Bromine undergoes oxidation and iodine undergoes (d)reduction in these reactions.
- 34. The chemical that undergoes self oxidation and self reduction in the same reaction is
 - (a) benzyl alcohol (b) acetone
 - (c) formaldehyde (d) acetic acid
- 35. The oxidation number of an element in a compound is evaluated on the basis of certian rules. Which of the following rules is not correct in this respect?
 - (a) The oxidation number of hydrogen is always + 1.
 - (b)The algebraic sum of all the oxidation numbers in a compound is zero.
 - An element in the free or the uncombined state bears (c) oxidation number zero.
 - (d) In all its compounds, the oxidation number of fluorine is -1.
- 36. Zn gives H_2 gas with H_2SO_4 and HCl but not with HNO₃ because
 - (a) Zn acts as an oxidising agent when it reacts with HNO₃
 - (b) HNO₃ is weaker acid than H₂SO₄ and HCl
 - (c) In electrochemical series, Zn is above hydrogen
 - (d) NO_2^- is reduced in preference to hydronium ion
- 37. Which of the following elements does not show disproportionation tendency?

(a)	Cl	(b) Br	
(c)	F	(d) l	

- 38. The oxidation number of sulphur in S_8 , S_2F_2 , H_2S_3 respectively, are (b +2, +1 and -2)(a) $0, \pm 1$ and -2
 - (c) 0, +1 and +2(d) -2, +1 and -2

- 39. Stronger is oxidising agent, more is:
 - standard reduction potential of that species (a)
 - the tendency to get it self oxidised (b)
 - the tendency to lose electrons by that species (c)
 - (d) standard oxidation potential of that species
- 40. Which of the following statement(s) is/arc correct for the given reaction?
 - $2HgCl_2(aq) + SnCl_2(aq) \rightarrow Hg_2Cl_2(s) + SnCl_4(aq)$
 - (i) Mercuric chloride is reduced to Hg₂Cl₂
 - (ii) Stannous chloride is oxidised to stannic chloride
 - (iii) HgCl₂ is oxidised to Hg₂Cl₂
 - (iv) It is an example of redox reaction
 - (a) (i), (ii) and (iv) (b) (i) and (ii)
 - (c) (iii) and (iv) (d) (iii) only
- The standard reduction potentials for Cu²⁺/Cu; Zn²⁺/Zn; 41. Li^{+}/Li ; Ag⁺/Ag and H⁺/H₂ arc + 0.34 V, -0.762 V, - 3.05 V, + 0.80 V and 0.00 V respectively. Choose the strongest reducing agent among the following
 - (a) Zn (b) H₂
 - (c) Ag (d) Li
- 42. In the disproportionation reaction $3 \text{ HClO}_3 \rightarrow \text{HClO}_4 + \text{Cl}_2 + 2\text{O}_2 + \text{H}_2\text{O}$, the equivalent mass of the oxidizing agent is (molar mass of $HClO_3 = 84.45$) (a) 16.89 (b) 32.22 (d) 28.15
 - (c) 84.45
- 43. Which of the following behaves as both oxidising and reducing agents ?
 - (a) H₂SO₄ (b) SO,
 - (c) H₂O (d) HNO,
- 44. Which of the following statement(s) is/arc correct?
 - Oxidation state of carbon in C_3H_4 is -(4/3). (i)
 - (ii) Electrons are never shared in fraction.
 - (i)and(ii) (b) Only(i) (a)
 - (d) Neither (i) nor (ii) (C) Only(ii)
- 45. In the reaction shown below, oxidation state of the carbon in reactant and product are (i) and (ii) respectively? Is the given reaction a redox reaction? $Na_2CO_3(aq) + HCl(aq)$

	\longrightarrow Na ^{\oplus} (aq)+Cl ⁻ (aq)+H ₂ O(ℓ)+CO ₂ (g			
(a)	(i) 6, (ii) 4, yes	(b)	(i) 6, (ii) 6, No	
(C)	(i) 4, (ii) 4, No	(d)	(i) 4, (ii) 4, yes	

Response Grid	32.abcd 37.abcd 42.abcd	33.abcd 38.abcd 43.abcd	34.abcd 39.abcd 44.abcd	35.abcd 40.abcd 45.abcd	36. abcd 41. abcd
------------------	-------------------------------	-------------------------------	-------------------------------	-------------------------------	----------------------

Space for Rough Work

DAILY PRACTICE PROBLEMS

CHEMISTRY SOLUTIONS

DPP/CC08

- 1. (a) [Fc(H₂O)₅NO] SO₄ Let O.N. of Fe bex then, $|x(x)+5 \times (0)+1 \times (+1)+1 \times (-2)=0$ $\therefore x=+1$
- 2. (c) In $BaO_2 + H_2SO_4 \rightarrow BaSO_4 + H_2O_2$ all atoms are present in the same O.S. in reactants and products.

3. (a)
$$\operatorname{Cr}_2 \operatorname{O}_7^{2-} + 6\operatorname{I}^- + 14\operatorname{H}^+ \longrightarrow 2\operatorname{Cr}^{3+} + 3\operatorname{I}_2 + 7\operatorname{H}_2 \operatorname{O}_{+3}$$

- 4. (d) O.N. of N in NO₂ and N₂O₄ is +4 \therefore difference is zero. O.N. of P in P₂O₅ and P₄O₁₀ is+5 \therefore difference is zero O.N. of N in N₂O is+1 and in NO is+2. The difference is 1 O.N. of S in SO₂ is +4 and in SO₃ is+6. The difference is +2
- 5. (d) Xc=53.5% : F=46.5%Relative number of atoms Xe

 $=\frac{53.5}{131.2} = 0.4 \text{ and } F = \frac{46.5}{19} = 2.4$ Simpleratio Xc = 1 and F = 6 ∴ Molecular formula is XeF₆ O.N.of Xeis+6.

- 6. (d) The element is Ti (At. no. 22). Electronic configuration is $1s^2$, $2s^2p^6$, $3s^2p^6d^2$, $4s^2$, the energy level of 3d and 4s is very close. It can exhibit +4 oxidation state (Ti⁴⁴).
- (d) In Ag₂O, O.N. of Ag is+1 and in Ag the O.N. is 0. There is gain of electrons, hence H₂O₂ act as a reducing agent.
- 8. (d) In redox reaction oxidation and reduction take place simultaneously. $Cu_2S + 2FeO \rightarrow 2Cu + 2Fe + SO_2$. O.N. of Cu changes from +1 to 0 (reduction) and O.N. of S changes from -2 to +4 (oxidation).
- 9. (d) Order of decreasing electrode potentials of Mg, K, Ba and Ca is Mg>Ca>Ba>K

It can be explained by their standard reduction potentials.

$$E_{K^{+}|K}^{\circ} = -2.925$$

$$E_{Ba}^{2+}|Ba} = -2.90$$

$$E_{Ca}^{2+}|Ca} = -2.87$$

$$E_{Ma}^{0}^{2+}|Ma} = -2.37$$

Highly negative value of E_{red}^{*} shows the least value of electrode potential.

(i) Mn^{ri+} + nc⁻ _____ M, for this reaction, high negative value of E° indicates lower reduction potential, that means M will be a good reducing agent.

Stronger reducing agent
$$\Rightarrow$$
 Easy to oxidise
 \downarrow
Lower reduction potential \Leftarrow higher oxidation potential
(ii) Element F Cl Br I
Reduction potential +2.87 +1.36 +1.06 +0.54
(E°volt)

As reduction potential decreases from fluorine to iodine, oxidising nature also decreases from fluorine to iodine.

(iii) The size of halide ions increases from F^- to I^- . The bigger ion can loose electron easily. Hence the reducing nature increases from HF to HI.

11. (d) Negative $E^{\circ} \Rightarrow$ Stronger reducing agent or weaker oxidising agent

Positive $E^{\circ} \Rightarrow$ Weaker reducing agent or stronger oxidising agent.

12. (a) Both Fe(II) and S(IV) in SO₃²⁻ can be oxidised to Fe(III) and $(SO_4)^{2-}$ respectively hence $(3/5) \times 0.5 = 0.3$ mol /litre.

 $\begin{bmatrix} MnO_{4}^{-} + 5e^{-} + 8H^{+} \rightarrow Mn^{2+} + 4H_{2}O \end{bmatrix} \times \frac{3}{5}$ Fc²⁺ \longrightarrow Fc³⁺ + c⁻ SO₃²⁻ \longrightarrow SO₄²⁻ + 2e⁻ $\frac{3}{5}MnO_{4}^{-} + \frac{24}{5}H^{+} + Fe^{2+} + SO_{3}^{2-}$ \longrightarrow 3/5 Mn²⁺ + 12/5H₂O + Fe³⁺ + SO₄²⁻

- 13. (d) Reduction potential of Cu(II) is greater than that of Zn(II) and Al(III) thus can be easily replaced by these ions. Moreover solution of copper is blue in color.
- 14. (b) $3SO_2 + O_3 \rightarrow 3SO_3$ O.N. of S changes from +4 to +6. Two electron change \therefore Eq. Wt = M/2. (molecular wt. = M)

15. (a)
$$2KMnO_4 + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4$$

$$+3H_2O + 5O$$

$$+2FeSO_4 + H_2SO_4 + O \rightarrow Fe_2(SO_4)_3 + H_2O$$

Get More Learning Materials Here :

CLICK HERE

🕀 www.studentbro.in

s-25

DPP/CC08-

O.N. of Mn changes from +7 to+2 (Reduction)

O.N. of Fe changes from +2 to +3 (Oxidation)

16. (c) On balancing the given equations, we get

$$2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \longrightarrow 2Mn^{2-}$$

So, x = 2, y = 5 & z = 16

17. (b) On reaction with hot and concentrated alkali a mixture of chloride and chlorate is formed

$$3Cl_2 + 6 \text{ NaOH}(\text{excess}) \xrightarrow{\text{Hot}} +5$$

$$5$$
NaCl + NaClO₃ + 3H₂O

 $+10CO_{2}+8H_{2}O$

18. (a)
$$[Co(NH_3)_5Cl.]Cl_2, \xrightarrow{H_1}_{+1}H \xrightarrow{N} O - H, \\ -3 & H_{+1}H \xrightarrow{N} O - H, \\ \begin{pmatrix} H \\ H \\ H \\ H \\ H \\ -3 & -3 \\$$

- 19. (c) The redox couple with maximum reduction potential will be best oxidising agent and with minimum reduction potential will be best reducing agent.
- 20. (a) $3MnO_4^2 + 2H_2O \rightarrow MnO_2 + 2MnO_4^- + 4OH^-$

or MnO₄²⁻ +
$$\frac{2}{3}$$
H₂O $\rightarrow \frac{1}{3}$ MnO₂ + $\frac{2}{3}$ MnO₄ + $\frac{2}{3}$ OH⁻
1. (b) In iodometry, K₂Cr₂O₂ liberates I₂ from iodides (Nal or

21. (b) In iodometry, $K_2Cr_2O_7$ liberates I_2 from iodides (NaI or KI) which is titrated with $Na_2S_2O_3$ solution.

 $K_2Cr_2O_7 + I^- + H^+ \longrightarrow Cr^{3+} + I_2$

Here, one mole of $K_2 Cr_2 O_7$ accepts 6 mole of electrons.

Equivalent weight =
$$\frac{\text{molecular weight}}{6}$$

22. (d) $Cl_2 + 2 \text{ NaOH} \rightarrow \text{NaCl} + \text{NaClOH} + H_2O$

$${}^{+6}_{3}MnO_4^{2-} + 2H_2O \rightarrow 2MnO_4^{-} + MnO_2 + 4OH^{-}$$

$$^{+4}$$
 $H_2O \rightarrow HNO_3 + HNO_2$

All undergo disproportionation.

23. (c)
$$\stackrel{-4}{N_2H_4} \xrightarrow{1 \text{ loss of 10c}^-} N_2^{+6}(y);$$

-

O.N.of N changes from -2 to+3

- 24. (b) Phosphorus, sulphur and chlorine disproportionate in the alkaline medium.
- 25. (c) Oxidation number of oxygen in $OF_2 = +2$ and

 $\operatorname{in} \operatorname{KO}_2 = \frac{-1}{2}.$

26. (d) In H_2SO_4 , sulphur is in highest oxidation state (+6). Hence H_3SO_4 will be strongest oxidising agent.

27. (c)
$$K_2Cr_2O_7 + 3SO_2 + 4H_2SO_4 \rightarrow$$

 $K_2SO_4 + Cr_2(SO_4)_3 + 3SO_3 + 4H_2O$ O.N.of chromium changes from +6 to +3

- 28. (a) Higher the value of reduction potential higher will be the oxidising power whereas the lower the value of reduction potential higher will be the reducing power.
- 29. (a) More the reduction potential, more will be the oxidising power.
- 30. (c) The violent reaction between sodium and water is an example of redox reaction :

(Oxd. state)
$$2Na + 2H_2O \longrightarrow 2NaOH + H_2$$

 $0 + 1 + 1 = 0$

In this reaction, sodium (Na) is oxidised to NaOH while H_2O is reduced to H_2 .

31. (a) $FcSO_4$ is oxidised to $Fc_2(SO_4)_3$, change in O.N. of Fc is by I. Hence equivalent weight of Mohr's salt is M/I = M.

32. (d)
$$2K_2CrO_4 + 2HCl \rightarrow K_2Cr_2O_7 + 2KCl + H_2O$$

Coefficients are 2, 2, 1, 2, 1

- 33. (a)
- 34. (c) In Cannizzaro's reaction

 $2HCHO + KOH \rightarrow CH_3OH + HCOOK$

formaldehyde is getting reduced as well as oxidised.

```
35. (a)
```

36. (4) Zinc gives H_2 gas with dil H_2SO_4/HCl but not with HNO_3 because in HNO_3 , NO_3^- ion is reduced and give NH_4NO_3 , N_2O , NO and NO_2 (based upon the concentration of HNO_3)

$$\begin{array}{l} (2n + 2HNO_3 \longrightarrow Zn(NO_3)_2 + 2H] \times 4 \\ (nearly 6\%) \end{array}$$

$$\begin{array}{l} HNO_3 + \$H \longrightarrow NH_3 + 3H_2O \\ NH_3 + HNO_3 \longrightarrow NH_4NO_3 \\ 4Zn + 10HNO_3 \longrightarrow 4Zn(NO_3)_2 + NH_4NO_3 + 3H_2O \\ Cn \text{ is on the top position of hydrogen in electrochemical series. So Zn displaces H_2 from dilute H_2SO_4 and HCl with liberation of H_2. \\ Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2 \end{array}$$

37. (c) 38. (a)

) ON of S in $S_8 = 0$ ON of S in $S_2F_2 = +1$ ON of S in $H_2S = -2$

- 39. (a) More is E_{RP}^* , more is the tendency to get itself reduced or more is oxidising power.
- 40. (a) For statement (iii), $HgCl_2$ is reduced to Hg_2Cl_2
- 41. (d) More the negative reduction potential, more is the tendency to lose electron. The reducing power increases as the standard reduction potential becomes more and more negative.

-DPP/CC08

s-26

Thus, Li is the strongest reducing agent as the standard reduction potential of Li^+/Li is mostnegative, -3.05 V.

42. (a)
$${}^{+5}_{\text{ClO}_3} \longrightarrow {}^{0}_{\text{Cl}_2}$$

$$x - 6 = -1$$
 $x = 0$

x = +5 x = 0 (x = oxidation number)

Equivalent mass = $\frac{\text{Molecular mass}}{\text{Oxidation number}} = \frac{84.45}{5} = 16.89$

- 43. (b) In SO₂ the O.N. of S can increase and decrease. Hence can behave as reducing and oxidising agent. Oxidation state of S varies from -2 to 6.
- 44. (a) -(4/3) is the average oxidation state of C in C_3H_4 .
- 45. (c) The redox reaction involve loss or gain of electron(s) i.e. change in oxidation state. Given reaction is not a redox reaction as this reaction involves no change in oxidation state of reactant or product.

